CENTRAL CALIFORNIA AIR QUALITY RESEARCH

How Science is Charting a Path to Cleaner Air.

Wednesday, May 17, 2006
Piccadilly Inn, University
4961 N. Cedar Avenue
Fresno, California

CENTRAL CALIFORNIA AIR QUALITY RESEARCH

How Science is Charting a Path to Cleaner Air.

Policy Implications
District Perspective

Seyed Sadredin

Executive Director/APCO

Wednesday, May 17, 2006
Piccadilly Inn, University
4961 N. Cedar Avenue
Fresno, California

Overview

- Current state of air quality
- The challenges ahead
- Next questions we need to answer

State of Air Quality Emissions Inventory

 Ozone and PM2.5 precursor emissions have been substantially reduced in the SJV

Reductions, 1990-2005

NOx Emissions Reductions	41%
ROG Emissions Reductions	40%
Directly Emitted PM10	13%
Directly Emitted PM2.5	10%
Good	News!

State of Air Quality – Ozone Ambient Concentrations, 1990-2005

- 1-hour ozone
 - Number of annual of exceedance days dropped 57% (3-yr average)
- 8-hour ozone
 - Number of annual of exceedance days dropped 16% (3-yr average)

Good News!

State of Air Quality – PM10 Ambient Concentrations, 1990-2005

- 1990-2005
 - 24-hr design value dropped 56%
 - Highest annual average concentration dropped 39%
- <u>2003-2005</u>
 - No violations of the 24-hr and annual NAAQS
 - Attainment

Great News!

State of Air Quality — PM2.5 Ambient Concentrations, 1999-2004

Monitoring began in 1999

SJV's highest PM2.5 monitoring sites

	1999	2005
24-hr Standard	35-38 estimated exceedance days	12 estimated exceedance days
Annual Average	28 μg/m³ 20 μg/m³	

Good News!

State of Air Quality Ambient Concentrations, 1990-2005

- 8-hour ozone
 - Large number of exceedance days
 - Design value has not significantly changed since 1990
- PM2.5
 - Most sites still violate annual PM2.5 standard

A Long Way to Go

Why is the San Joaquin Valley Prone to Air Pollution?

•Topography and weather create ideal conditions for serious air pollution

Emission Density

Monumental Challenges Ahead

 8-hr ozone and PM2.5 standards redefine healthy air and trigger new requirements and timelines

O	Z	or	ne
P	M	2.	.5

Plan Deadline 6/15/2007 4/5/2008

Attainment Deadline 6/15/2013 4/5/2010 (+5 yr extension.)

Monumental Challenges Ahead

- Attainment may require 60% reduction in emissions (preliminary estimate)
- Several generations of rules already in place on most stationary sources
- New reductions will be costly but needed
- Need significant reductions in State and Federal Sources
- Overcoming emissions from population growth; need better land-use approach to reduce VMT

Sources by Emission Control Jurisdiction

60% Reduction in Emissions: How Difficult?

How Do We Get There? Strategy Issues

- How much reductions do we really need?
- Will strategies that were effective for 1-hour ozone work for 8-hour ozone?
- How can we integrate the PM and Ozone strategies?
- Can we refine our strategies to conserve resources?
 - Seasonal / episodic controls?
 - Sub-regional controls?
 - What pollutants?
 - Other innovative/new approaches?

How Do We Get There? Timing Issues

- What level of reductions is possible with current and future technologies?
- How much time is needed to...
 - deploy current technologies
 - develop future technologies
- How rapidly can we attain...
 - Given that the rate of reductions of mobile source emissions is set by market-based attrition
 - Given that next generations of mobile source controls are not expected until significantly after 2010

How Do We Get There? Known Needs

- Need better quantification of agricultural emissions and controls.
- Need accurate/reliable emissions inventory forecasts for mobile and other source categories.
- Need to stimulate & promote development of new and cost-effective control technologies.